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ABSTRACT 
 

We describe a simple approach to semantic parsing based on a 
tensor product kernel. We extract two feature vectors: one for 
the query and one for each candidate logical form. We then 
train a clasifier using the tensor product of the two vectors. 
Using very simple features for both, our system achieves an 
average F1 score of 40.1% on the WEBQUESTIONS dataset. 
This is comparable to more complex systems but is simpler to 
implement and runs faster. 

 
1. INTRODUCTION 
 
In recent years, the task of semantic parsing for querying large 
databases has been studied. This task differs from early work in 
semantic parsing in several ways: 
 
• The databases being queried are typically several orders of 

magnitude larger, contain much more diverse content, and 
are less structured.  

• In standard semantic parsing approaches, the aim is to learn a 
logical form to represent a query. In recent approaches the 
goal is to find the correct answer (entity or set of entities in 
the database), with learning a logical form a potential 
byproduct. 

• Because of this, the datasets, which would have consisted of 
queries together with their corresponding logical forms, now 
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may consist of the queries together with the desired correct 
answer 

• The datasets themselves are much larger, and cover a more 
diverse range of entities, however there may be a lot of 
overlap in the type of queries in the dataset. 

 
We believe it is the last of these points that means that simple 
techniques such as the one we present can work surprisingly 
well. For example, the WEBQUESTIONS dataset contains 83 
questions containing the term “currency”; of these 79 are asking 
what the currency of a particular country is. These 79 questions 
can be answered using the same logical form template, thus a 
system only has to see the term “currency”, and identify the 
correct country in the question to have a very good chance of 
getting the answer correct. 

Knowing this on its own is not enough to build an effective 
system however. We still need to be able to somehow identify 
that it is this particular term in the query that is associated with 
this logical form. In this paper we demonstrate one way that this 
can be achieved. We build on the paraphrasing approach of [1] in 
that we use a fixed set of templates to generate a set of candidate 
logical forms to answer a given query and map each logical form 
to a natural language expression, its canonical utterance. Instead 
of using a complex paraphrasing model however, we use tensor 
kernels to find relationships between terms occuring in the query 
and in the canonical utterance. The virtue of our approach is in its 
simplicity, which both aids implementation and speeds up 
execution. 
 
2. BACKGROUND 
 
The task of semantic parsing initially focussed on fairly small 
problems, such as the GeoQuery dataset, which initially 
consisted of 250 queries [2] and was later extended to around 
1000 queries [3]. Approaches to this task included inductive 
logic programming [2, 3], probabilistic grammar induction [4, 5], 

106 DAOUD CLARKE

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh



synchronous grammars [6] and induction of latent logical forms 
[7], the current state of the art on this type of dataset. 

More recently, attention has focussed on answering queries 
in much larger domains, such as Freebase [8], which contains at 
the time of writing of around 2.7 billion facts. There are two 
datasets of queries for this database: FREE917 consisting of 917 
questions annotated with logical forms [9], and WEBQUESTIONS 
which consists of 5,810 question-answer pairs, with no logical 
forms [10]. Approaches to this task include schema matching [9], 
inducing latent logical forms [10], application of paraphrasing 
techniques [1, 11], information extraction [12], learning low 
dimensional embeddings of words and knowledge base 
constituents [13] and application of logical reasoning in 
conjunction with statistical techniques [11]. Note that most of 
these approaches do not require annotated logical forms, and 
either induce logical forms when training using the given 
answers, or bypass them altogether. 

 
2.1. Semantic parsing via paraphrasing 
The PARASEMPRE system of [1] is based on the idea of 
generating a set of candidate logical forms from the query using a 
set of templates. For example, the query Who did Brad Pitt play 
in Troy? would generate the logical form 
 

Character.(Actor.BraddPitt ⊓ Film.Troy) 
 
as well as many incorrect logical forms. These are built by  
finding substrings of the query that approximately match 
Freebase entities and then applying relations that match the type 
of the entity. Given a logical form, a canonical utterance is 
generated, again using a set of rules, which depend on the 
syntactic type of the description of the entities. 

To identify the most likely logical form given a query, a set 
of features are extracted from the query, logical form and 
canonical utterance: 
 
 

SIMPLE, FAST SEMANTIC PARSING WITH A TENSOR 107

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh



 
 

Figure 1. Questions from the WEBQUESTIONS 
dataset containing the term “currency” 

 
• Features extracted from the logical form itself, such as the 

size of the denotation of a logical form, i.e. the number of 
results returned when evaluating the logical form as a query 
on the database. This is important, since many incorrect 
logical forms have denotation zero; this feature acts as a filter 
removing these. 

• Features derived from an association model. This involves 
examining spans in the query and canonical utterance and 
looking for paraphrases between these spans. These 
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paraphrases are derived from a large paraphrase corpus and 
WordNet [14]. 

• Features derived from a vector space model built using 
Word2Vec [15]. 

 
In an analysis on the development set of WEBQUESTIONS, the 
authors showed that removing the vector space model lead to a 
small drop in performance, removing the asssociation model 
gave a larger drop, and removing both of these halved the 
performance score.  
 
3. TENSOR KERNERLS FOR SEMANTIC PARSING 
 
We know that simple patterns or occurrences in the query can be 
used to identify a correct logical form with high probability, as 
with the “currency” example. We still need some way of 
identifying these patterns and linking them up to appropriate 
logical forms. In this section we discuss one approach for doing 
this. 

Our goal is to learn a mapping from queries to logical forms. 
One way of doing this to consider a fixed number of logical 
forms for each query sentence, and train a classifier to choose the 
best logical form given a sentence [1]. In order to use this 
approach, we need a single feature vector for each pair of queries 
and logical forms. Our proposal is to extract features for each 
query and logical form indepdendently, and to take their tensor 
product as the combined vector. Explicitly, let Q be the set of all 
possible queries and  be the set of all possible logical forms. 
For each query q ∈ Q and logical form ⋋ ∈  we represent the 
pair (q, ⋋) by the vector: 

 (q, ⋋) = Q(q) ⨂ (⋋) 
 
where Q and  map queries and logical forms to a vector 
space, i.e. perform feature extraction. 
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Whilst this could potentially be a large space, note that we 
can use the kernel trick to avoid computing very large vectors, 
using a simple identity of dot products on tensor spaces: 

 (q1, ⋋1) · (q2, ⋋2) = ( Q(q1) · Q(q2)) ( (⋋1) · (⋋2)) 
 

The advantage of using the tensor product is that it preserves all 
the information of the original vectors, allowing us to learn how 
features relating to queries map to features relating to logical 
forms. 

More generally, instead of representing the query and logical 
form as vectors directly, this can be done implicitly using 
kernels. For example, we may use a 
string kernel к1 on Q and a tree kernel к2 on , then define the 
kernel к (q,⋋) = к1 (q) к2 (⋋) on Q    . This idea is closely 
related to the Schur product kernel [16]. 

It is worth noting at this point that, while what we really 
want is a one-to-one mapping from queries to logical forms, the 
classifier actually gives us a set of logical forms for each query: 
we simply ask it to classify each pair (q, ⋋). In a probabilistic 
approach, such as logistic regression, we can choose the ⋋ for 
which the classifier gives the highest probability for (q, ⋋). 
 
3.1. Application to semantic parsing via paraphrasing 
There are clearly many ways we could map queries and logical 
forms to vectors. In this paper we will consider one simple 
approach in which we use unigrams as the features for both the 
query and the canonical utterance associated with the logical 
form. In this case, the tensor product of the vectors corresponds 
directly to the cartesian product of the unigrams derived from the 
query with those from the canonical utterance. 

Recall that given two vector spaces U and V of 
dimensionality n and m, the tensor product space U ⨂ V has 
dimensionality nm. If we have bases for U and V, then we can 
construct a basis for U ⨂ V. For each pair of basis vectors u and 
v  in U and V respectively, we take a single basis vector u ⨂ v ∈ 
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U ⨂ V . In our case, the dimensions of U and V correspond to 
terms that can occur as unigram features in the query or 
canonical utterance respectively. Thus each basis vector of U ⨂ 
V corresponds to a pair of unigram features. 

As an example from the WEBQUESTIONS dataset, consider 
the query, What 5 countries border ethiopia?, and the canonical 
utterance The adjoins of ethiopia?, whose associated logical form 
gives the correct answer. Then there will be a dimension in the 
tensor product for each pair of words; for example the 
dimensions associated with (countries, adjoins) and (border, 
adjoins), as well as less useful pairs such as (5, ethiopia) would 
all have non-zero values in the tensor product. Thus we are able 
to learn that if we see borders in the query, then a logical form 
whose canonical utterance contains the term adjoins is a likely 
candidate to answer the query. 

 
4. EMPIRICAL EVALUATION 
 
4.1. Dataset 
We evaluated our system on the WEBQUESTIONS dataset [10]. 
This consists of 5,810 question-answer pairs. The questions were 
obtained by querying the Google Suggest API, and answers were 
obtained using Amazon Mechanical Turk. We used the standard 
train/test split supplied with the dataset, and used cross-validation 
on the training set for development purposes. 
 
4.2. Implementation 
We built our implementation on top of the PARASEMPRE system 
[1], and so our evaluation exactly matches theirs. Our 
implementation is freely available online.1 We substituted the 
paraphrase system of PARASEMPRE with our tensor kernel-based 
system (i.e. we excluded features from both the association and 
vector space models), but we included the PARASEMPRE features 
derived from logical forms. 

                                                 
1 Location witheld to preserve anonymity 
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To implement our tensor kernel of unigram features, we 
simply added all pairs of terms in the query and canonical 
utterance as features; in preliminary experiments we found that 
this was fast enough and we did not need to use the kernel trick, 
which could potentially provide further speed-ups. We did not 
implement any feature selection methods which may also help 
with efficiency. 

For evaluation, we report the average of the F1 score 
measured on the set of entities returned by the logical form when 
evaluated on the database, when compared to the correct set of 
entities. This allows, for example, to get a non-zero score for 
returning a similar set of entities to the correct one. For example, 
if we return the set {Jaxon Bieber} as an answer to the query 
Who is Justin Bieber’s brother? we allow a nonzero score (the 
correct answer according to the dataset is {Jazmyn Bieber, Jaxon 
Bieberg). 

 
4.3. Results 
Results are reported in Table 1. Our system achieves an average 
F1 score of 40.1%, compared to PARASEMPRE’S 39.9%. Our 
system runs faster however, due to the simpler method of 
generating features. Evaluating using PARASEMPRE on the 
development set took 22h31m; using the tensor kernel took 
14h44m on a comparable machine. 

Since we have adopted the logical form templates of 
PARASEMPRE, our upper bound or oracle F1 score is the same, 
63% [1]. This is the score that would be obtained if we knew 
which was the best logical form out of all those generated. In 
contrast, Microsoft’s DEEPQA has an oracle F1 score of 77.3% 
[11]; this could account for a large amount of the overall increase 
in their system. There is no reported oracle score for the 
Facebook system [13]. 

 
5. DISCUSSION 
 
Table 2 shows the top unigram feature pairs after training on the 
WEBQUESTIONS training set. It is clear that, whilst there are 
some superfluous features that simply learn to replace a word 
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with itself (for example currency with currency, there are 
obviously many useful features that would be nontrivial to 
identify accurately. There are also spurious ones such as the pair 
(live, birthplace); this is perhaps due to a large proportion of 
people who live in their birthplace. 
 
Table 1. Results on the WEBQUESTIONS dataset, together with 
results reported in the literature 

 Average F1 score 
SEMPRE [10]  35.7 
PARASEMPRE [1]  39.9 
FACEBOOK [13]  41.8 
DEEPQA [11]  45.3 
Tensor kernel with unigrams  40.1 

 
Table 2. Top unigram pair features and their weights after 
training 
 Feature Weight  Feature  Weight 
 (currency, currency)  4.18  (name, who)   2.69 
 (parents, father)  3.46  (born, birth)   2.69 
 (die, death)  3.33 (influenced, influenced)  2.64 
 (religion, religion)  3.28  (live, birthplace)   2.63 
 (currency, used)  3.22 (country, birthplace)  2.62 
 (religions, religion)  3.11  (type, form)   2.62 
 (movies, film)  2.97 (do, profession)  2.60 
 (states, adjoins)  2.97  (died, death)   2.60 
 (timezone, zone)  2.95  (system, form)   2.60 
 (timezone, time)  2.94 (countries, country)  2.60 
 (speak, spoken)  2.91  (married, marry)   2.55 
 (currency, countries) 2.84 (language, language)  2.54 
 (money, currency) 2.82  (music, genres)   2.51 
 (capital, city)  2.77 (money, used)  2.47 
 (party, party)  2.75 (time, zone)  2.47 
 (nationality, country) 2.72  (wife, spouse)   2.46 
 
In development, we found that ordering the training 
alphabetically by the text of the query lead to a large reduction in 
accuracy.2 Ordering alphabetically when performing the split for 

                                                 
2  We omit the values since they were performed on an earlier version 
of our code and are not comparable. 

SIMPLE, FAST SEMANTIC PARSING WITH A TENSOR 113

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh



cross validation (instead of random ordering) means that a lot of 
queries on the same topic are grouped together, increasing the 
likelihood that a query on a topic seen at test time would not have 
been seen at training time. This validates our hypothesis that 
simple techniques work well because of the homogeneous nature 
of the dataset. We would argue that this does not invalidate the 
techniques however, as it is likely that real-world datasets also 
have this property. 

It is a feature of our tensor product model that there is no 
direct interaction between the features from the query and those 
from the logical form. This is evidenced by the fact that the 
system has to learn that the term currency in the query maps to 
currency in the canonical utterance. This hints at ways of 
improving over our current system. More interestingly, it also 
means that we are currently making very light use of the 
canonical utterance generation; in the canonical utterance, 
currency could be replaced by any symbol and our system would 
learn the same relationship. This points at another route of 
investigation involving generating features for use in the tensor 
kernel directly from the logical form instead of via canonical 
utterances. 

 
6. CONCLUSION 
 
We have shown semantic parsing via paraphrasing using unigram 
features together with a tensor kernel performs comparably to 
more complex systems on the WEBQUESTIONS dataset. Our 
system is simpler to implement and runs faster. 

In future work, as well as looking at more sophisticated 
feature inputs to the tensor kernel, we hope to work on improving 
the oracle F1 score. 
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