

Simple, Fast Semantic Parsing
with a Tensor Kernel

DAOUD CLARKE

University of Sussex, Falmer, Brighton, UK

ABSTRACT

We describe a simple approach to semantic parsing based on a
tensor product kernel. We extract two feature vectors: one for
the query and one for each candidate logical form. We then
train a clasifier using the tensor product of the two vectors.
Using very simple features for both, our system achieves an
average F1 score of 40.1% on the WEBQUESTIONS dataset.
This is comparable to more complex systems but is simpler to
implement and runs faster.

1. INTRODUCTION

In recent years, the task of semantic parsing for querying large
databases has been studied. This task differs from early work in
semantic parsing in several ways:

• The databases being queried are typically several orders of

magnitude larger, contain much more diverse content, and
are less structured.

• In standard semantic parsing approaches, the aim is to learn a
logical form to represent a query. In recent approaches the
goal is to find the correct answer (entity or set of entities in
the database), with learning a logical form a potential
byproduct.

• Because of this, the datasets, which would have consisted of
queries together with their corresponding logical forms, now

International Journal of Computational Linguistics and Applications, Vol. 6, No. 2, 2015, pp. 105–116
Received 23/01/2015, Accepted 27/02/2015, Final 09/04/2015.

ISSN 0976-0962, http://ijcla.bahripublications.com

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

may consist of the queries together with the desired correct
answer

• The datasets themselves are much larger, and cover a more
diverse range of entities, however there may be a lot of
overlap in the type of queries in the dataset.

We believe it is the last of these points that means that simple
techniques such as the one we present can work surprisingly
well. For example, the WEBQUESTIONS dataset contains 83
questions containing the term “currency”; of these 79 are asking
what the currency of a particular country is. These 79 questions
can be answered using the same logical form template, thus a
system only has to see the term “currency”, and identify the
correct country in the question to have a very good chance of
getting the answer correct.

Knowing this on its own is not enough to build an effective
system however. We still need to be able to somehow identify
that it is this particular term in the query that is associated with
this logical form. In this paper we demonstrate one way that this
can be achieved. We build on the paraphrasing approach of [1] in
that we use a fixed set of templates to generate a set of candidate
logical forms to answer a given query and map each logical form
to a natural language expression, its canonical utterance. Instead
of using a complex paraphrasing model however, we use tensor
kernels to find relationships between terms occuring in the query
and in the canonical utterance. The virtue of our approach is in its
simplicity, which both aids implementation and speeds up
execution.

2. BACKGROUND

The task of semantic parsing initially focussed on fairly small
problems, such as the GeoQuery dataset, which initially
consisted of 250 queries [2] and was later extended to around
1000 queries [3]. Approaches to this task included inductive
logic programming [2, 3], probabilistic grammar induction [4, 5],

106 DAOUD CLARKE

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

synchronous grammars [6] and induction of latent logical forms
[7], the current state of the art on this type of dataset.

More recently, attention has focussed on answering queries
in much larger domains, such as Freebase [8], which contains at
the time of writing of around 2.7 billion facts. There are two
datasets of queries for this database: FREE917 consisting of 917
questions annotated with logical forms [9], and WEBQUESTIONS
which consists of 5,810 question-answer pairs, with no logical
forms [10]. Approaches to this task include schema matching [9],
inducing latent logical forms [10], application of paraphrasing
techniques [1, 11], information extraction [12], learning low
dimensional embeddings of words and knowledge base
constituents [13] and application of logical reasoning in
conjunction with statistical techniques [11]. Note that most of
these approaches do not require annotated logical forms, and
either induce logical forms when training using the given
answers, or bypass them altogether.

2.1. Semantic parsing via paraphrasing
The PARASEMPRE system of [1] is based on the idea of
generating a set of candidate logical forms from the query using a
set of templates. For example, the query Who did Brad Pitt play
in Troy? would generate the logical form

Character.(Actor.BraddPitt ⊓ Film.Troy)

as well as many incorrect logical forms. These are built by
finding substrings of the query that approximately match
Freebase entities and then applying relations that match the type
of the entity. Given a logical form, a canonical utterance is
generated, again using a set of rules, which depend on the
syntactic type of the description of the entities.

To identify the most likely logical form given a query, a set
of features are extracted from the query, logical form and
canonical utterance:

SIMPLE, FAST SEMANTIC PARSING WITH A TENSOR 107

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Figure 1. Questions from the WEBQUESTIONS
dataset containing the term “currency”

• Features extracted from the logical form itself, such as the

size of the denotation of a logical form, i.e. the number of
results returned when evaluating the logical form as a query
on the database. This is important, since many incorrect
logical forms have denotation zero; this feature acts as a filter
removing these.

• Features derived from an association model. This involves
examining spans in the query and canonical utterance and
looking for paraphrases between these spans. These

108 DAOUD CLARKE

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

paraphrases are derived from a large paraphrase corpus and
WordNet [14].

• Features derived from a vector space model built using
Word2Vec [15].

In an analysis on the development set of WEBQUESTIONS, the
authors showed that removing the vector space model lead to a
small drop in performance, removing the asssociation model
gave a larger drop, and removing both of these halved the
performance score.

3. TENSOR KERNERLS FOR SEMANTIC PARSING

We know that simple patterns or occurrences in the query can be
used to identify a correct logical form with high probability, as
with the “currency” example. We still need some way of
identifying these patterns and linking them up to appropriate
logical forms. In this section we discuss one approach for doing
this.

Our goal is to learn a mapping from queries to logical forms.
One way of doing this to consider a fixed number of logical
forms for each query sentence, and train a classifier to choose the
best logical form given a sentence [1]. In order to use this
approach, we need a single feature vector for each pair of queries
and logical forms. Our proposal is to extract features for each
query and logical form indepdendently, and to take their tensor
product as the combined vector. Explicitly, let Q be the set of all
possible queries and be the set of all possible logical forms.
For each query q ∈ Q and logical form ⋋ ∈ we represent the
pair (q, ⋋) by the vector:

 (q, ⋋) = Q(q) ⨂ (⋋)

where Q and map queries and logical forms to a vector
space, i.e. perform feature extraction.

SIMPLE, FAST SEMANTIC PARSING WITH A TENSOR 109

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Whilst this could potentially be a large space, note that we
can use the kernel trick to avoid computing very large vectors,
using a simple identity of dot products on tensor spaces:

 (q1, ⋋1) · (q2, ⋋2) = (Q(q1) · Q(q2)) ((⋋1) · (⋋2))

The advantage of using the tensor product is that it preserves all
the information of the original vectors, allowing us to learn how
features relating to queries map to features relating to logical
forms.

More generally, instead of representing the query and logical
form as vectors directly, this can be done implicitly using
kernels. For example, we may use a
string kernel к1 on Q and a tree kernel к2 on , then define the
kernel к (q,⋋) = к1 (q) к2 (⋋) on Q . This idea is closely
related to the Schur product kernel [16].

It is worth noting at this point that, while what we really
want is a one-to-one mapping from queries to logical forms, the
classifier actually gives us a set of logical forms for each query:
we simply ask it to classify each pair (q, ⋋). In a probabilistic
approach, such as logistic regression, we can choose the ⋋ for
which the classifier gives the highest probability for (q, ⋋).

3.1. Application to semantic parsing via paraphrasing
There are clearly many ways we could map queries and logical
forms to vectors. In this paper we will consider one simple
approach in which we use unigrams as the features for both the
query and the canonical utterance associated with the logical
form. In this case, the tensor product of the vectors corresponds
directly to the cartesian product of the unigrams derived from the
query with those from the canonical utterance.

Recall that given two vector spaces U and V of
dimensionality n and m, the tensor product space U ⨂ V has
dimensionality nm. If we have bases for U and V, then we can
construct a basis for U ⨂ V. For each pair of basis vectors u and
v in U and V respectively, we take a single basis vector u ⨂ v ∈

110 DAOUD CLARKE

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

U ⨂ V . In our case, the dimensions of U and V correspond to
terms that can occur as unigram features in the query or
canonical utterance respectively. Thus each basis vector of U ⨂
V corresponds to a pair of unigram features.

As an example from the WEBQUESTIONS dataset, consider
the query, What 5 countries border ethiopia?, and the canonical
utterance The adjoins of ethiopia?, whose associated logical form
gives the correct answer. Then there will be a dimension in the
tensor product for each pair of words; for example the
dimensions associated with (countries, adjoins) and (border,
adjoins), as well as less useful pairs such as (5, ethiopia) would
all have non-zero values in the tensor product. Thus we are able
to learn that if we see borders in the query, then a logical form
whose canonical utterance contains the term adjoins is a likely
candidate to answer the query.

4. EMPIRICAL EVALUATION

4.1. Dataset
We evaluated our system on the WEBQUESTIONS dataset [10].
This consists of 5,810 question-answer pairs. The questions were
obtained by querying the Google Suggest API, and answers were
obtained using Amazon Mechanical Turk. We used the standard
train/test split supplied with the dataset, and used cross-validation
on the training set for development purposes.

4.2. Implementation
We built our implementation on top of the PARASEMPRE system
[1], and so our evaluation exactly matches theirs. Our
implementation is freely available online.1 We substituted the
paraphrase system of PARASEMPRE with our tensor kernel-based
system (i.e. we excluded features from both the association and
vector space models), but we included the PARASEMPRE features
derived from logical forms.

1 Location witheld to preserve anonymity

SIMPLE, FAST SEMANTIC PARSING WITH A TENSOR 111

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

To implement our tensor kernel of unigram features, we
simply added all pairs of terms in the query and canonical
utterance as features; in preliminary experiments we found that
this was fast enough and we did not need to use the kernel trick,
which could potentially provide further speed-ups. We did not
implement any feature selection methods which may also help
with efficiency.

For evaluation, we report the average of the F1 score
measured on the set of entities returned by the logical form when
evaluated on the database, when compared to the correct set of
entities. This allows, for example, to get a non-zero score for
returning a similar set of entities to the correct one. For example,
if we return the set {Jaxon Bieber} as an answer to the query
Who is Justin Bieber’s brother? we allow a nonzero score (the
correct answer according to the dataset is {Jazmyn Bieber, Jaxon
Bieberg).

4.3. Results
Results are reported in Table 1. Our system achieves an average
F1 score of 40.1%, compared to PARASEMPRE’S 39.9%. Our
system runs faster however, due to the simpler method of
generating features. Evaluating using PARASEMPRE on the
development set took 22h31m; using the tensor kernel took
14h44m on a comparable machine.

Since we have adopted the logical form templates of
PARASEMPRE, our upper bound or oracle F1 score is the same,
63% [1]. This is the score that would be obtained if we knew
which was the best logical form out of all those generated. In
contrast, Microsoft’s DEEPQA has an oracle F1 score of 77.3%
[11]; this could account for a large amount of the overall increase
in their system. There is no reported oracle score for the
Facebook system [13].

5. DISCUSSION

Table 2 shows the top unigram feature pairs after training on the
WEBQUESTIONS training set. It is clear that, whilst there are
some superfluous features that simply learn to replace a word

112 DAOUD CLARKE

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

with itself (for example currency with currency, there are
obviously many useful features that would be nontrivial to
identify accurately. There are also spurious ones such as the pair
(live, birthplace); this is perhaps due to a large proportion of
people who live in their birthplace.

Table 1. Results on the WEBQUESTIONS dataset, together with
results reported in the literature

 Average F1 score
SEMPRE [10] 35.7
PARASEMPRE [1] 39.9
FACEBOOK [13] 41.8
DEEPQA [11] 45.3
Tensor kernel with unigrams 40.1

Table 2. Top unigram pair features and their weights after
training
 Feature Weight Feature Weight
 (currency, currency) 4.18 (name, who) 2.69
 (parents, father) 3.46 (born, birth) 2.69
 (die, death) 3.33 (influenced, influenced) 2.64
 (religion, religion) 3.28 (live, birthplace) 2.63
 (currency, used) 3.22 (country, birthplace) 2.62
 (religions, religion) 3.11 (type, form) 2.62
 (movies, film) 2.97 (do, profession) 2.60
 (states, adjoins) 2.97 (died, death) 2.60
 (timezone, zone) 2.95 (system, form) 2.60
 (timezone, time) 2.94 (countries, country) 2.60
 (speak, spoken) 2.91 (married, marry) 2.55
 (currency, countries) 2.84 (language, language) 2.54
 (money, currency) 2.82 (music, genres) 2.51
 (capital, city) 2.77 (money, used) 2.47
 (party, party) 2.75 (time, zone) 2.47
 (nationality, country) 2.72 (wife, spouse) 2.46

In development, we found that ordering the training
alphabetically by the text of the query lead to a large reduction in
accuracy.2 Ordering alphabetically when performing the split for

2 We omit the values since they were performed on an earlier version
of our code and are not comparable.

SIMPLE, FAST SEMANTIC PARSING WITH A TENSOR 113

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

cross validation (instead of random ordering) means that a lot of
queries on the same topic are grouped together, increasing the
likelihood that a query on a topic seen at test time would not have
been seen at training time. This validates our hypothesis that
simple techniques work well because of the homogeneous nature
of the dataset. We would argue that this does not invalidate the
techniques however, as it is likely that real-world datasets also
have this property.

It is a feature of our tensor product model that there is no
direct interaction between the features from the query and those
from the logical form. This is evidenced by the fact that the
system has to learn that the term currency in the query maps to
currency in the canonical utterance. This hints at ways of
improving over our current system. More interestingly, it also
means that we are currently making very light use of the
canonical utterance generation; in the canonical utterance,
currency could be replaced by any symbol and our system would
learn the same relationship. This points at another route of
investigation involving generating features for use in the tensor
kernel directly from the logical form instead of via canonical
utterances.

6. CONCLUSION

We have shown semantic parsing via paraphrasing using unigram
features together with a tensor kernel performs comparably to
more complex systems on the WEBQUESTIONS dataset. Our
system is simpler to implement and runs faster.

In future work, as well as looking at more sophisticated
feature inputs to the tensor kernel, we hope to work on improving
the oracle F1 score.

REFERENCES

1. Berant, J. & Liang, P. 2014. Semantic parsing via paraphrasing. In
proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Baltimore,

114 DAOUD CLARKE

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Maryland, Association for Computational Linguistics (pp. 1415-
1425).

2. Zelle, J. M. & Mooney, R. J. 1996. Learning to parse database
queries using inductive logic programming. In proceedings of the
National Conference on Artificial Intelligence (pp. 1050-1055).

3. Tang, L. R. & Mooney, R. J. 2001. Using multiple clause
constructors in inductive logic programming for semantic parsing.
In Machine Learning: ECML 2001 (pp. 466-477), Springer.

4. Zettlemoyer, L. S. & Collins, M. 2005. Learning to map sentences
to logical form: Structured classification with probabilistic
categorial grammars. In proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence (UAI2005)
(pp. 658-666), AUAI Press.

5. Kwiatkowksi, T., Zettlemoyer, L., Goldwater, S. & Steedman, M.
2010. Inducing probabilistic CCG grammars from logical form
with higher-order unification. In proceedings of the 2010
Conference on Empirical Methods in Natural Language
Processing, Cambridge (pp. 1223-1233), MA, Association for
Computational Linguistics.

6. Wong, Y.W. & Mooney, R. 2007. Learning synchronous grammars
for semantic parsing with lambda calculus. In proceedings of the
45th Annual Meeting of the Association of Computational
Linguistics (pp. 960-967), Prague, Czech Republic, Association for
Computational Linguistics.

7. Liang, P., Jordan, M. & Klein, D. 2011. Learning dependency-
based compositional semantics. In proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies (pp. 590-599), Portland, Oregon, USA,
Association for Computational Linguistics.

8. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J. 2008.
Freebase: A collaboratively created graph database for structuring
human knowledge. In proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (pp. 1247-1250),
ACM.

9. Cai, Q. & Yates, A. 2013. Large-scale semantic parsing via schema
matching and lexicon extension. In proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers) (pp. 423-433), Sofia, Bulgaria, Association for
Computational Linguistics.

10. Berant, J., Chou, A., Frostig, R. & Liang, P. Semantic parsing on
Freebase from question-answer pairs. In proceedings of the 2013

SIMPLE, FAST SEMANTIC PARSING WITH A TENSOR 115

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

Conference on Empirical Methods in Natural Language Processing
(pp. 1533-1544), Seattle, Washington, USA, Association for
Computational Linguistics.

11. Wang, Z., Yan, S., Wang, H. & Huang, X. 2014. An Overview of
Microsoft Deep QA System on Stanford WebQuestions
Benchmark. Technical Report MSR-TR-2014-121.

12. Yao, X., Berant, J. & Durme, B. V. 2014. Freebase qa: Information
extraction or semantic parsing? In Workshop on Semantic Parsing.

13. Bordes, A., Chopra, S. & Weston, J. 2014. Question answering
with subgraph embeddings. In proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP)
(pp. 615-620), Doha, Qatar, Association for Computational
Linguistics.

14. Fellbaum, C. 1998. WordNet: An Electronic Lexical Database.
MIT Press.

15. Mikolov, T., Chen, K., Corrado, G. & Dean, J. 2013. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.

16. Shawe-Taylor, J. & Cristianini, N. 2004. Kernel methods for
pattern analysis. Cambridge University Press, pub-
CAMBRIDGE:adr.

DAOUD CLARKE
DEPARTMENT OF INFORMATICS,

UNIVERSITY OF SUSSEX,
FALMER, BRIGHTON, UK.

E-MAIL: <DAOUD.CLARKE@GMAIL.COM>

116 DAOUD CLARKE

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh

